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The wavelet transformation is briefly presented. It is shown how the analysis of 
the local scaling behavior of fractals can be transformed into the investigation of 
the scaling behavior of analytic functions over the half-plane near the boundary 
of its domain of analyticity. As an example, a "Weierstrass-like" fractal function 
is considered, for which the wavelet transform is related to a Jacobi theta 
function. Some of the scalings of this theta function are analyzed, and give some 
information about the scaling behavior of this fractal. 

KEY W O R D S :  Local scaling behavior; oscillatory critical behavior; fractals; 
Jacobi theta function; behavior on the boundary of analytic function over the 
half-plane. 

1. I N T R O D U C T I O N  

The purpose of this paper is to present a new method in analyzing fractal 
objects. These arise in a natural way in physics, e.g., as strange attractors of 
a dissipative dynamical system (see, e.g., Ref. 2). A typical property of frac- 
tals is that they have no natural minimal length scale; they become more 
and more self-similar as the length scale gets small. We want to give a more 
precise meaning to this. Throughout  this paper we will limit ourselves to 
fractals represented by bounded continuous functions s over the real line 
9t, which are in general not differentiable. Let us introduce local variables 
at any point (x0, S(Xo)) of the graph of s. Consider 

Lo(X)  = S(Xo + x )  - S(Xo) (1.1) 

Then self-similarity of s at Xo will mean the following: if we scale the local 
variable x with some a > 0 (x  --* ax)  and if we rescale at the same time fx0 
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with a -~, this process should become stabilized in a nontrivial manner for 
some �9 > 0 as a gets small: 

fxo(ax) ~ a~f~o(X) (a ~ 0) (1.2) 

The exponent ~ will be called the (local) scaling exponent of s at Xo. It 
measures the relation between the x scale and the s scale at Xo and is 
therefore a kind of local dimension of s. In the case where s is the charac- 
teristic function of a probability measure # 

s(x) =f Z~o,~ du 

a theorem of Young (4) shows us that ~ may be interpreted as a Hausdorff 
dimension of #, if e is #-almost everywhere constant. In this case, when e is 
essentially independent of Xo, one speaks of a homogeneous fractal, 
whereas if ~ depends on Xo a multifractal description should be used (see, 
e.g., Ref. 3). 

In this paper we will especially be interested in the following family of 
functions, labeled by a real parameter/3: 

W~(x)= ~ n-~cos(TznZx), /3>1 (1.3) 
n = l , ~  

Related functions have been studied as examples of fractals, tl' 17,19) They are 
periodic with period 2 and symmetric around x = 0. For/3 < 3 the series of 
the formal derivatives of W~ is not absolutely convergent. Figure 1 shows 
Wa for/3 = 2. From this we might guess that Wa is self-similar in the sense 
presented above; however, a direct verification of (1.2) from (1.3) seems 
impossible, and so we must transform Wa in an appropriate way. For 
obvious reasons this transformation should be linear, and involve the 
notions of scale and position. This is done by the so-called wavelet 
transformation, (11) which we present later. 

This paper is organized as follows: in Section 2 we present the wavelet 
transformation and give some ideas about how to find the local scaling 
exponents with the help of this transformation. In Section 3 we give some 
rigorous results for some special classes of fractals. In Section 4 we show 
that a suitable wavelet transform of Wa is a Jacobi theta function, and we 
present some numerical work. In Section 5 we analyze some scalings of W~ 
with the help of this theta function. 

Caution! We will not be able to prove rigorously that W~ satisfies 
locally (1.2) in whatever sense, but we shall give good reasons to believe 
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Fig. 1. The function W e of (1.3) f o r / ? = 2 .  

this. The reader should keep this in mind if he or she gets the feeling that 
this paper  has two different parts that do not fit together too well. We 
agree. 

2. THE W A V E L E T  T R A N S F O R M A T I O N  

In this section we introduce the wavelet transformation of a real 
function s over the real line 9t. We will limit ourselves to the basic facts 
that we use in the following. For  more detailed information we refer to the 
rapidly growing literature. (~ 1,13) 

We will denote by Fg the Fourier transform of g: 

Vg(o3) = f g(x) e - iOJ x dx 

Then we need the following definition: 

D e f i n i t i o n  1. A function g E L 2 ~ L ~ is called an 
waveler n) if 

cg = (2n) -1 f IFg(~o)l 2 &o/co < oo (2.1) 

admissible 
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Note that this implies ~ g(x) dx = 0. Then the wavelet transform Ts of 
a bounded function s with respect to the wavelet g is a function over the 
half-plane H parametrized by (b, a), b, a e 9t, a > 0: 

Ts(b, a)= f ( l /a)  g ( [ x - b ] / a ) s ( x ) d x  

= (2re) 1 f-~(aco) eib~ de) (2.2a) 

It has been shown that this transformation can be inverted for a large class 
of functions. (1~) In this case the inversion formula is given by 

S(X)  : Cg 1 f Ts(b, a) g ( [ x -  b]/a) db da/a (2.2b) 

This transformation is a sort of mathematical microscope, whose 
magnification is l/a, whose position is b, and whose optics is given by the 
choice of the specific wavelet g. 

The following behavior of T under translations and dilations of s is 
easily verified: 

s(x) ~ s(x + c) ~ Ts(b, a) ~ Ts(b + c, a) 

s(x) --* s(2x) ~ Ts(b, a) ~ Ts()ob, 2a) 
(2.3) 

From this we might expect that the transform of a function that is self- 
similar around Xo with local scaling exponent c~, (1.2), will be 
approximately homogeneous of degree ~ around (b, a ) =  (Xo, 0). By an 
overall translation we can make x0 = 0, and so, using the fact that ~ g = 0 
and (1.2), we can write 

Ts( 2b, 2a ) = f (2a) -~ ~( [x  - 2b ]/ [ 2a ] ) s( x ) dx 

= f (2a) -1 ~( [x  - 2b]/[2a])[s(x) - s(0)] dx 

= f ~,(x) fo(2[ax + b]) dx 

2 ~ f g(x) fo(ax + b) dx 

= 2 ~ Ts(b, a) (2.4) 
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However, this argument holds only if g decays sufficiently fast at infinity, 
as can be seen by considering the following example. Let s ( x ) =  x ~ for 
0 < x < l ;  0 for x~<0; and 1 for x~>l. Then s is approximately 
homogeneous around Xo--0. Let the wavelet g behave at infinity as 
g g x- '~ 1. Now let us look at the behavior of the wavelet transform when 
the position is fixed (b = 0) and the scale goes to 0 (a ~ 0). There will be a 
local and a global contribution to T: 

/" / ,  

T(0, a) = J ( l /a)  ~ ( x / a )  x ~ dx  + J ( l /a)  ~ ( x / a )  dx  
[o,i] D, oo] 

=a" f[ . ( x ) x ' +  f g t x )dx  
O, 1/a] [ 1/a, oo ] 

=r,+r. 

The global term behaves always as Tg ~ a m because of the decay of g at 
infinity. However, for the local term we obtain T ~ a  ~ o r  Tl~a m, 
depending on whether c~ < m  or a ~>m, and so the scaling of T is deter- 
mined by T~. If a ~> m, then T(0, a) behaves like a m and (2.4) does not hold. 
So we see that the wavelet might be able to read the local scaling 
exponents :~ < m, but not the others. 

3. S O M E  R I G O R O U S  RESULTS A B O U T  S C A L I N G S  
A N D  W A V E L E T S  

In this section we give some rigorous results about the relation 
between the local behavior of s--e.g., the scaling exponent ~--and the 
behavior of its wavelet transform for small scales, if s satisfies one of the 
conditions that we now define. 

3.1. Three Classes of  Fractals 

Def in i t ion 2 (ES). A real function s over the real line ~R satisfies 
at Xo the exact scaling condition (ES) if there are real constants ~ > 0 and 
c+, c , not both equal to zero, such that 

s(x) = S(Xo) + c + I x -  Xo[ + c _ f x -  Xol + r ( x -  Xo) 

( i x [ + = 0  if x < 0 ;  ]x[ = 0  if x > 0 ;  and Ix[ otherwise) and that the 
remainder is truly a remainder: r (x )  = o ( x  ~) (x  -* 0). 

However, to take into account oscillating critical behavior (see, e.g., 
Refs. 9 and 10) occurring in the solutions of many functional equations, for 
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instance, equations derived from renormalization group analysis of critical 
behavior, at least when the renoralization group is discrete, we shall 
replace the one real exponent e by an infinity of complex exponents e + in7, 
n e 2. It is essentially the same to replace the constants c+ and c_ by real 
functions v+(_) which have the following (discrete) scale invariance: 
v +(_)(/~x)= v+~_~(x) for some real/? > O. In this case/~ and ~ are related 
via r exp(2n/V). We will call 7 the (local) periodic scaling exponent. 

D e f i n i t i o n  3 ( P S ) .  A real function s over the real line satisfies at 
Xo the periodic scaling condition (PS) if there are real constants ~ > 0 and 
7 > 0 and two real functions v+ and v , which satisfy v+(_)(/3x)= v+(_)(x) 
with/3 = exp(2r~/y), such that 

s(x)  = S(Xo) + v + ( I x -  Xol) I x -  xol + + v_  ( I x -  x0[) I x -  x01 ~_ + r(x  - Xo) 

and the remainder r is a remainder: r(x)= o(x~). In addition, the functions 
v+(_~ should have the following everywhere convergent expansion: 

v + ( x ) - -  Y~ d+ Ixl"", v ( x ) =  Y~ a2 Ixl '"  
n =  - - c o ,  W o o  n ~  - - a o ,  -t- o o  

with ~2 . . . .  + ~ I d a ( - )  I < oo, and d6 ~, d o not both zero. 
The minimal regularity of s we shall consider will be the following 

well-known notion of H61der continuity: 

D e f i n i t i o n  4 ( H ) .  A real function s over the real line satisfies at Xo 
the H61der condition (H) if there are two real constants c~ > 0 and c > 0 
such that I s ( x ) -  s(x0)l < c I x -x01  ~ for x close enough to Xo. 

In addition, we shall always require that s is bounded (Llsll co < oo). 
We have the following implications: (ES) =~ (PS) =~ (H) =~ the function 

s is continuous at Xo, since ~ > 0 .  If s satisfies (PS), then c~ and 7 are 
uniquely determined by s; if s satisfies (ES), then in addition c+ and c are 
uniquely determined by s. In the (PS) case the local scaling exponent ~ can 
be obtained by the following limit: 

c~ = lim inf log Is(x) - S(Xo)l/log Lx - Xol 
x ~ x  0 

(3.1) 

It  is the analog for functions of the exponent previously defined for 
measures, (3'14) where it is called the local singularity strength. The con- 
ditions (ES) and (PS) ensure that s is self-similar around Xo in the sense of 
Section 1 (1.2). 



Wavelet Transformation of Fractal Objects 969 

3.2. A Class of Wave le ts  

Special functions require a special treatment, and so we will use as 
wavelets the following class of functions, which are essentially filters over 
the positive frequencies. (12) More precisely, we require g to satisfy: 

(i) Fg is real and suppFg=~R + 

(ii) Fg(~o)=~o'~+O(d"+~) ,  m > 0  (~o~0)  (3.2) 

(iii) Fg(~o)=O(m -n)  V n > 0  ( o ~ )  

These wavelets are all admissible because m > 0. The real part of g is even, 
whereas the imaginary part of g is an odd function, the one being the 
Hilbert transform of the other. They will give rise to complex-valued 
wavelet transforms. The behavior of these wavelets at infinity can be found 
to be Ig(x)l "~lX] -m-1 .  For reasons that shall become clear soon, we 
introduce the Mellin transforms of all translates of g: 

M ~ ( ~ , f l ) = f  x ~ ~ g ( x - f l ) d x ,  0 < R e ~ < m + l ,  f l e e r  (3.3) 
[o, oo] 

Since g ( -  x ) =  ~(x),  and since g has an analytic continuation in the 
complex upper half-plane H which is continuous on the boundary, one can 
verify that 

Mg(O~, - fl) = ei'~ Mg(a, fl) (3.4) 

3.3. The Transforms of  The Special Fractals 

As we saw in the previous section, the answer to the question of 
whether the wavelet transform scales with ~ when a becomes small might 
depend on the relation between this local exponent ~ and the behavior of 
the wavelet at infinity. We therefore call an exponent ~ integrable with 
respect to g if 

gx  ~ e L ~ 

For the wavelets we shall use, this is equivalent to e < m. 
We now want to look at the wavelet transform for small scale a. The 

three classes defined above will be treated separately. 

3.3.1.  Local H61der Continuity of  s. Let s satisfy (H) at x0 
with an exponent ~, which is integrable with respect to, the wavelet g. 
Without loss of generality, we may assume that Xo=0  [see (2.3)]. Then, 
using the fact that S g dx = 0, we can write 

Ts(b, a) = ~ (l /a)  ~ ( [x  - b] /a ) [ s (x )  - s(0)] dx 
J 
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Changing x in ax, we can estimate the modulus of Ts: 

ITs(b, a)l <~ f [g(x-b/a)L Is(ax)- s(O)l dx 

We now want to separate the local and the global contributions of Ts. 
Because s is H61der continuous at Xo = 0, there is a ~ > 0 such that Ixl < 
implies I s ( x ) -  s(0)l < c Ixl ~ with some real c > 0. We will use this 6 to cut 
the integral into two parts: 

'Ts(b'a)' <~(Iaxt<~ + faxt>l`5) [g(x-b/a)L ls(ax)-s(O)' dx= T'+ Tg 

In the local part Tz we majorize the integrand with the help of the H61der 
condition, whereas in the global part Tg the boundedness of s will be used. 
Since gx~ e L ~, we obtain 

Tt<<.ca~ f Ig(x-b/a)l  [xl~dx 
axl < ,5 

<~ ca~ f I g(x - b/a)l Ix[ = dx 

Tg ~< 2 [tsll ~ Ix1 <`5/~ Ig(x - b/a)l dx 

We denote by H`5(x) the cone in the half-plane with opening angle 
7 t -2~ :  H6(x)={(b ,a )~Hl6<arg(b+ia)<rc-6} .  Then, for all ~ > 0 ,  
small enough, we have Tt=  O(a ~) and Tg= O(a '~) ( a -* 0 )  uniformly in 
Ha(0). So, using the translation invariance (2.3) of Ts, we find that the 
local H61der continuity of degree c~ < m of s at Xo implies the same kind of 
regularity of Ts, provided the point (Xo, 0) situated at the boundary of the 
open half-plane is approached in a nontangential way: 

V6 > 0 =*. Ts(xo + b, a) = O(a ~) for a -*  0 and (b, a) ~ H`5(0) (3.5) 

Let now the local exponent be nonintegrable with respect to the wavelet g: 
c~/> m. Then the global term is still Tg = O(am), but the local term is found 
to be T l = O ( a  m) or T /=  O(amloga), depending on whether c~>rn or 

= m. The point (Xo, 0) should again be approached in a nontangential 
manner. All this together shows that not all of the local regularity of s at Xo 
can be found in Ts if the wavelet does not decay sufficiently fast at infinity. 
We have instead 

(b, a) ~ H6(O) ~ Ts(xo + b, a) = O ( a  m log a) (a -* 0) if ~ -= m 

= O ( a  m) ( a - * 0 )  if ~ > m  
(3.6) 
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So we see that the wavelets work as a sort of filter: only the integrable 
exponents will be distinguished by the wavelet, whereas the nonintegrable 
exponents might give rise to the same scaling of Ts, due to the decay of g 
at infinity. 

3.3.2. Exact  Scal ing Condit ion. Let s satisfy (ES) at xo and let 
the local exponent ~ be integrable with respect to the wavelet g. Again we 
may assume that x o = 0. Starting from 

Ts(b, a)= f (1/a) ~,([x-b]/a)[s(x)- s(0)] & 

we change x in ax. Using the property (ES) of s, we obtain 

Ts(b, a) = f ~(x - b/a)[s(ax) - s(0)] dx 

with 

t" 
= j ~ ( x -  b/a)Ec+ laxl% + c [ax[L + r(ax)] dx 

= C(b/a) a ~ + R (3.7a) 

C(u) = c+Me(a + 1, u)+c Mg(~+ 1, -u) 
= (c+ - ei'~c ) Mg(~ + 1, u) (3.7b) 

since c~ is real, (3.4). 
We now want to estimate the remainder R. First note that r can be 

written as r(x)= fxl ~ p(x) with p satisfying: 

(i) r e > 0 ,  3 6 > 0  such that Ixl < 6 ~ ] p ( x ) f  <e, 

(ii) I[Pr[~ < 0o. 

The first is clear because r = o(x~), and the second follows from IIsll ~ < ~ .  
We want to show that ]R]/a ~ can be made arbitrary small. So let e > 0 be 
given. A first estimate is immediate: 

IRI/a=~ f [g(x-b /a)[  Ixf ~ Ip(x)] dx 

As before, we will use 6 to separate the local and the global contributions 
in the remainder, and so 

'R]/a~<~(fax,< + ~ ) ' g ( x - b / a ) ] ' x l ~ l p ( x ) '  dx 
\ I laxt >~6 



972 Holschneider 

In the first integral we majorize [Pl by e, and in the second by IIPII ~. Since 
gx ~ e L 1, we obtain 

[RI/a~<e f Ig(x-b/a)l lxl= dx + llP[l~ fi Ig(x-b/a)[  Ix[ ~ 
laxl < 6 axl >1 6 

<<. C,e~ + o(a) 

But e was arbitrary and therefore R=o(a~),  whenever (x0,0) is 
approached in a nontangential way as before [(b, a) ~ H~(0)]. 

All this together shows that the wavelet transform of a bounded 
function s satisfying (ES) at Xo with an exponent c~ is approximately 
homogeneous at (x o, 0), provided the exponent c~ is integrable with respect 
to the wavelet g: 

Ts(xo+2b, 2 a ) = U T s ( x o + b , a ) + o ( ) ~ ) ,  2--*0 (3.8) 

We still should make sure that the function C in (3.7) does not vanish 
for all u. Since c+( ) are real constants, a sufficient condition will be that 
the exponent e is not an integer. 

It was found (~z) that it is useful to consider the modulus and the phase 
of the wavelet transform separately. Let 4~ = arg Ts; then we see that ~b is 
to leading order a function of the direction b/a only: ~ =  ~o(b/a)+ .., ,  
and so the lines of constant phase will pass through the point (Xo, O) when 
the singularity of s is situated at Xo. If the point (Xo, O) is approached from 
above (b/a = 0), then we see with the help of (3.7b) that the leading term 
q~o contains some information about the local symmetry of s at xo. So 
~o(xo, O)=O rood it implies that s is approximately even around xo, 
whereas q~0(Xo, O) = z/2 rood 7t indicates that s is odd around x0. 

3.3.3. The Periodic  Sca l ing  Condi t ion .  Let s satisfy (PS) at x 0 
and let the local exponent be integrable with respect to the wavelet g. 
From the definition of (PS) it is clear that locally s can be seen as a sum of 
functions satisfying the analog of condition (ES), but where the real 
exponent ~ is replaced by the complex exponent ct + in;;, n ~ Z. Since this 
sum is by definition absolutely convergent, we may treat it term by term. 
So the same considerations as before lead us to 

Ts(x o + b, a) = v(b/a, a) a ~ + R(b, a) (3.9a) 

with a complex-valued function 

v(t, u) = ~ dn(t) u in~, t, u ~ ~t, u > 0 (3.9b) 

and the functions d, are given by 

d , ( u ) = d + M e ( ~ + l + i n T ,  u ) + d ~ M g ( ~ + l + i n T ,  - u )  (3.9c) 
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The remainder is again a remainder when the point (xo, 0) is approached 
in a nontangential way: (b, a) ~ H6(0) ~ R = o(a ~) for any 6 > 0, small 
enough. 

So the wavelet transform is again approximately homogeneous of 
degree a, but now in an oscillatory manner, due to the oscillatory behavior 
of s at Xo : 

V(b, a) E H6(0) 3 function f such that: 

Ts(xo + 2b, )oa) = f ( 2 )  2~Ts(xo + b, a) + 0(2 ~) (3.1o) 

All these complex-valued functions f will have the same (discrete) scale 
invariance as the local functions v+( ) associated to s by the condition 
(PS): / (f l ) . )  = f ( 2 )  for/~ = exp(2~/7). 

Consider again the phase ~ = arg Ts. We suppose that Ts is different 
from zero along the straight line passing through (x0, 0), so that ~ can be 
made a continuous function along this line. Then we see that �9 will turn, 
when we approach the point (Xo, 0): 

~(Xo + fib,/~a) = ~(Xo + b, a) + 2~n (3.11) 

with some n ~ 2~. 

3.3.4.  T h e  Resu l t s .  We have seen that the local properties of s at 
Xo can be found as local properties of Ts at (Xo,0) when (Xo,0) is 
approached in a nontangential way. So we will define the local scaling 
exponent aT of Ts at (Xo, 0) for any bounded function s as 

aT=  inf lira inf log IT(b, a)l/log a (3.12) 
6 > 0 (b, a)  ~ (xo, 0),  (b, a)  ~ H6(xo )  

If s satisfies (PS), then the inf's will actually be reached. To take into 
account oscillatory critical behavior of Ts we define the local periodic 
scaling exponent VT as follows: 

7v = inf lira inf [~b(b, a)/log a]  (3.13) 
6 > 0 (b, a)  ~ ( x  O, 0), (b, a)  E H~(xo) ,  Ts(b,  a)  ~ 0 

Here the phase ~b = arg Ts is supposed to be a continuous function along 
the way (b, a). This can always be achieved, since Ts is different from zero 
along this way. 

Then we can summarize our results in the following theorems: 
Let s be a bounded, real function over the real line. Let g be a wavelet 

satisfying (3.2) with m > 0, and let Ts be the wavelet transform of s with 
respect to gin. We then have the following results for the three classes of 
fractals (H), (ES), (PS): 
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Theorem 1 (H case). Let s be H61der continuous (H) at Xo with an 
exponent e > 0. Let e r  be the local scaling exponent of Ts at Xo. Then: 

(i) ,<m=~V6 >0 :  Ts(xo+b, a)=O(a ~) for a--*0 and (b, a)eH~(O). 

(ii) ~<m~r>~c~; ot>>.m~r>~m. 

T h e o r e m  2 (ES case). Let s satisfy (ES) at x0 with a noninteger 
local scaling exponent c~ < m. Let ~ T be the local scaling exponent of Ts at 
x0, and 7r  its periodic scaling exponent. Then: 

(i) V(b,a)~H: Ts(xo+2b, 2a)=2~Ts(xo+b,a)+o(2 ~) (2--*0). 

(ii) O~T-~O~, ]~T-~O. 

T h e o r e m  3 (PS case). Let s satisfy (PS) at Xo with a noninteger 
local scaling exponent ~ < m, and periodic scaling exponent 7. Let ~ ~ be the 
local scaling exponent of Ts at x0, and 2r  its periodic scaling exponent. 
Then: 

(i) V(b, a)~H, 3 function f such that 
Ts(xo + 2b, 2a) = f ( 2 )  ~.=Ts(x o + b, a) + o(2 ~) 
and f(fl2) = f ( 2 )  for fl = exp(Zzc/V). 

(ii) ~v = ~, YT = n7, for some n ~ 7?. 

Remark. We were not able to prove rigorously that a specific scaling 
behavior of the transform Ts implies a scaling behavior of s of the same 
kind. But nevertheless we strongly believe that there is such an intimate 
relation. The rest of this paper should be understood in that sense. 

4. THE W A V E L E T  T R A N S F O R M  OF A SPECIAL F A M I L Y  
OF FRACTALS 

We now give an explicit example of wavelet transforms of some fractal 
functions. As mentioned in the introduction, we will be interested in the 
following family of functions: 

W~(x)= ~ n-Bcos(~nZx), f l > l  (4.1) 

Related functions have been studied as examples of fractals. (1' 17,19) They are 
periodic with period 2 and symmetric around x = 0. For  fl < 3 the series of 
the formal derivatives of W~ seems to diverge. We do not know whether 
the functions W~(x) satisfy one of the conditions we have treated in the 
previous section, but Fig. 1 may convince the reader that at least they 
might be self-similar. Therefore, it will be interesting to analyze these 
functions with the help of an appropriate wavelet transformation. 
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4.1. The Transformation Wavelets 

Following Ref. 15, we will use as wavelets the following functions, 
given in the Fourier space by 

m e - ~  (4.2) Fgm(CO) = I~ol + 

These wavelets are filters over the positive frequencies of the kind we have 
used in the previous section. A simple calculation yields 

gm(X) = (27r) -1 r (m  + 1)(1 - ix)  - m - 1  (4.3) 

and the Mellin transforms (3.3) are 

Mg,.(~,f l )=(2n) ' F ( c O F ( m + l - e )  e'~/Z(l+ifl)~ ,~-i (4.4) 

Let s be the function that we want to transform. Then this family of 
wavelets will give rise to wavelet transforms Ts, which are of the following 
special form(15): 

Ts(b, a ) =  ( 2 n ) - '  f -~(aco)  eib~ do) 

-- (27z) 1 ~ (aco)m e-aCo + ibCO Fs((D ) de) 
J [0,  c~ ] 

= (2~)- i  am fEo, o~] (omei(b+ia)~~ ( 4 . 5 )  

We now write b + ia = z and so the half-plane on which Ts is defined is 
the complex upper half-plane. The transform itself can be written as 

Ts(z) = (imz) m D(z) (4.6) 

where D is an analytic function of the complex upper half-plane. This 
reflects the fact that the wavelet gm is essentially the mth derivative of a 
Poisson kernel (e.g., Ref. 16). The scale parameter is now the imaginary 
part of z, and so the study of the small-scale behavior of s is transformed 
into the study of the behavior of an analytic function near the boundary of 
the upper half-plane, which for a fractal function will in general coincide 
with the boundary of its analyticity domain. 

4.2. The Wavelet Transformation of Wp 

Now we come to calculate the transform T~, m of W B with respect to 
these wavelets. The Fourier transform of W~ is a sum of 6-functions, and so 
we obtain 

m m T#,m(Z)=~z~ (imz) ~ n2'~-#e i~"2z (4.7) 
n =  1,  o 0  
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Things will become much nicer if we choose fl = m/2. Then the t ransform 
Tl~ = T~,~/2 is essentially a Jacobi theta function: 

with 

T~(z) = ~ rt~/2(irnz) ~/2 [8(z)  - 1 ] (4.8a) 

8(z)  = ~ e ~"2~ (4.8b) 
t ~  - -oO,  + OO 

In order  to analyze the local scaling behavior  of  W~, we should explore the 
scaling behavior  of the Jacobi  theta function (4.8b) near the real line, which 
is the boundary  of  its analyticity domain.  This will be done in the next 
section. First we shall give some numerical results. 

4.3. S o m e  Numer ica l  Results 

Figure 2 shows I~)l versus the posit ion parameter  Re(z), the scale 
parameter  Im(z)  being fixed at different values ranging from 1.0 to 10 6. 

1.09 

1~3(z)l 

0.0 
(a) 

im(z) = 100 

0.0 re(z) 1.0 

Fig. 2. The absolute value of the theta function ]8(z)[ of (4.8b) versus Re(z), The imaginary 
part of z is fixed at different values ranging from 1 to 10 -6. Since 8 is essentially a wavelet 
transform of W~ (Fig. 1), Im(z) can be interpreted as a scale parameter. 
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As the scale becomes small, the pictures seem to become stabilized when 
I~)l is rescaled by a factor depending only on the scale Ira(z) in such a way 
that the peak at Re(z) = 1/2 fits into the picture. Notice the change of the 
length scale at the [~11 axis. More exactly, let us look at the following family 
hx of real functions over the real line: 

h~(x) = )~-~ I~(x + iSt)l (4.9) 

where the scaling exponent ~ is fixed for each 2 by requiring that 
ha(l/2) = 1. Then, what actually is observed numerically is that the limit 
h~(2--* 0) exists and has the shape of Fig. 2g. To put it differently, the 
renormalization procedure (4.9) has a nontrivial fixed point. This gives 
numerical evidence that g - - and  hence the wavelet transform of W~--is 
locally of the form (3.8); that is, locally homogeneous. So the peaks we see 
for small scale might be situated at the real points for which the local 
scaling exponent of s is identical with the one at xo = 1/2. Since there are 
no points at which h~ diverges as 2 goes to zero, this exponent might 
correspond to the smallest scaling exponent that can be found in Wa. The 

3.62 

log(h)l) 

re(z) =@- 

1.34 ~ J  
-13.8 log(ira (z)) -4.61 

Fig. 3. Plot of log Ll~(z)l versus log(Im z), where Re z is fixed at x/5. This shows that the 
Jacobi theta function (4.8b) shows oscillatory critical behavior when the boundary of its 
analyticity domain is approached in this nontangential way. 
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height of the peaks might then be related to the local constants c+ and c_ 
at these points via (3.7). 

Figure 3 shows log [9(x +/2)1 versus log 2, where the position is fixed 
at x = ,,/5. The oscillations around a straight line with slope ~ - 1/4 might 
indicate that at this point W~ shows oscillatory critical behavior. 

In the following section we will explain theoretically these numerical 
results. 

5. S O M E  SCALINGS OF THE THETA FUNCTION 

In this section we study the behavior of 9 in the neighborhood of the 
real axis. Specifically, we show that at one class of rational points 9 is 
governed by an exponent -1 /2 ,  at another by an exponent 0% whereas 
there is a well-defined set of irrationals where ~ is governed by an 
imaginary exponent, whose real part is -1 /4 .  

We define for ~ the analog of the scaling exponents of the wavelet 
transforms (3.12), (3.13). (We denote by H the complex upper half-plane.) 
Let H~(x) be the cone H~(x) = {z ~ HI 6 < arg(z - x) < ~ - 6 }. Then 

c%(x)=inf l iminf  log ll(z)/log(z- x) (5.1) 
z ~ x ,  z e  H ~ ( x )  

The limit should hold for the real and the imaginary parts separately. For 
the sets of x values that we shall consider, the limit processes can be 
replaced by the simple limit. However, (5.1) ensures that the exponent is 
well-defined for arbitrary x. 

Since 8 is never zero in H, ~7) and H is simply connected, log ~1 can be 
made a holomorphic function in H. A moment's reflection shows that the 
scaling exponent a r  of (3.12) of the wavelet transform T~ of Wa is related 
to ao via a t = r / 2  + Re c%, whereas the periodic scaling exponent 7r of 
(3.13) satisfies 77- = I m  %. 

Without any supplementary knowledge about 8, we can give a lower 
bound for the real part of the scaling exponent % of 8: for any fl > 3, the 
series (4.1) represents an everywhere differentiable function, and so Wt~ 
satisfies (H) at every point with a local scaling exponent a >~ 1. On the 
other hand, from the theorem we proved in Section 3 it follows that a t  j> 1. 
Using the relation between a r  and as we find 

Re c% ~> -1 /2  (5.2) 

It actually is known that It(z)= O(]Im z1-1/2).~6) 
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5.1. Some Basic Facts about  9 

To get more detailed information, we must work a little harder. 
Denote by G the modular group 

G = {z --* (az + b)/(cz + d)[a, b, e, d are integers, a d -  be = 1 } 

Every element of G is a meromorphic function, which leaves invariant the 
upper and the lower half-planes, the real axis, and the rationals. We denote 
by D the differentiation operator. The derivative Dg of any g 6 G is easily 
calculated: 

g~G,  g ( z ) = ( a z + b ) / ( c z + d ) ~ D g ( z ) = l / ( c z + d )  2 (5.3) 

The group G is (not freely) generated by two elements, the translation T 
and the negative inversion U, ~5) 

G= (T,  U),  T: z ~ z +  1, U: z ~  - 1 / z  (5.4) 

The following transformation formulas for ~) are known~7): 

l)( TZz ) = O(z ) (5.5a) 

8(Uz) = ( - i z )  m It(z) (5.5b) 

The square root is uniquely determined by the fact that U(i)= i. 
The subgroup of G generated by T 2 and U is called (is) the theta group 

Go. It is a nonnormal subgroup of G of index 3 (G: Go = 3) and so there 
are three cosets of Go in G. From the fundamental region of Go, (18) one can 
find three coset representatives, and so 

G = Go w Go T -1 u Go U T  -1  (5.6) 

Since any element g of Go can be written as a finite product of U and T 2, 
we can apply successively (5.5), and obtain the following covariance of ~1 
under the action of g e Gs: 

l)(g(z)) = fg(z) g(z) (5.7) 

where the multiplier fg(z) is uniquely defined by the following: 

(i) gl, g2eGo--*fglgz(z)=fg,(g2(z))fg2(z) (5.8a) 

(ii) f r2(z)= 1, f v ( z ) =  ( - i z )  ~/2 (5.8b) 

Equation (5.8a) is a cocycle condition. It is similar to the chain rule for the 
derivations: Dgl o gz(z)= Dgl(gz(z)) Dg2(z). Therefore, since DT2(z) -1/4= 
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Ifr2(z)] -4 and fv(z)=ff]DU(z)l -~/4, with (8 =  1, we have the following 
relation between Dg and fg: 

fg(Z)=~lOg(z)l-t/4 with some ~8= 1 (5.9) 

For  log 8, the multiplicative covariance (5.8) will be transformed in the 
following additive transformation formulas for g e Go: 

log 9(g(z)) = log ~(z) + rg(z) (5.10) 

where rg is uniquely defined by: 

(i) gl, g2~Go--*rgjg2(Z)=rg~(g2(z))+rg2(Z) (5.11a) 

(ii) r r2(z)=0,  rv(z)=�89 (5.11b) 

The first is clear since 8 has no zeros in the half-plane H, and since ~1 ~ 1 
for Im z--* 0% as easily seen from (4.8b). The second follows from (5.8b) 
and the fact that U(i)=i, which also determines the branch of the 
logarithm. 

Now we have tools to study the theta function near the real axis. 

5.2. Some Transformation Formulas 

In a first lemma we show that the scaling exponent ~o(x) of ~1 at x, 
(5.1), is invariant under the action of Go. 

Lemma 1. Let g EGo and x eg t  such that g(x)./=oe. Then 
c%(g(x)) = ~o(x). 

ProoL It is enough to consider the behavior of ~o under the 
generators of Go. Because of the periodicity of ~1, it is clear that 
~o(T2(x))=~o(x). So we consider U for x r  For  any f i > 0  there is a 
6 ' > 0  such that zeH6(x)=,.U(z)eH6,(Ux) for z close enough to x. 
Because U -1 = U, this statement holds also with U(z) and z exchanged. So 
we can write 

c%(Ux)=inf  l iminf  log~l(Uz)/log(Uz-Ux) 
6 z ~ x , z ~ H ~ ( x )  

In the following we will abbreviate the above limit by LIM. Using the 
covariance (5.10) of log 8, we obtain 

c%(Ux) = LIM [r v(z) + log 9(z)I/log( Uz - Ux) 
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Since rv(z) of (5.11b) is bounded in a neighborhood of x r  it does not 
contribute. Multiplying by 1 = log(z - x)/log(z - x) yields 

~o(Ux) = LIM [log O(z) log(z - x ) ] / [ l o g ( U z  - Ux) log(z - x ) ]  

Now U has a nonvanishing first derivative at x, and therefore 
log( Uz - Ux)/log(z - x) ~ 1, and so 

c%(Ux) = LIM log ~)(z)/log(z- x) = %(x)  | 

From the intuitive idea that ~1 is locally of the form (3.8), that is, 
locally homogeneous, it might be interesting to consider the following 
(complex) quantity: 

Co(x)= inf  l iminf  [O(z)/(z-x) ~(~] ( 5 . 1 2 )  
6 z ~ x , z ~ H ~ 5 ( x )  

Here all the limits should hold for the real and the imaginary parts 
separately. The next lemma will show us how this local constant changes 
under the action of the theta group Go. 

L e m m a  2. Let g eGo and x 6 9 t  such that g(x)~oo.  Then 
Co(g(x))  =-pg(X) Ca(x), and the multiplier pg is uniquely defined by: 

(i) gl ,  g2 ~ Go ~ pglg2(X) = pgl(g2(x)) pg2(Z) (5.13a) 

(ii) pv2(x)=l,  pU(x)=e-i~zsign(x)/4lxl 1/2+2~(x) (5.13b) 

ProoL Again it is enough to consider the behavior of Ca under the 
generators of Go. Since I} is periodic, (5.5), it is clear that Co(T2x)= Ca(x). 
Therefore we only need to prove that 

Ca(Ux)=e-ir~sign(x)/41xll/2+2~a(x)Co(x ) for x ~ 0  

As before, for any 6 > 0  there is a 6' such that 
z e H ~ ( x ) ~  U(z)eH~,(Ux) for z close enough to x and vice versa. So we 
can write 

Co(Ux) = inf lim inf [O( Uz)/(Uz - Ux) ~(vx)] 
,3 z ~ x ,  z e H 6 ( x )  

We will again use the abbreviation LIM for this limit. Since ~a is invariant, 
and 8 is covariant under U, we obtain 

Ca( Ux) = LIM [ f  v(z) a(z) ]/( Uz - Ux) ~(~) 
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Now multiplying with 1 = (z - x )~(x) / ( z  - x)  ~(~), and using the fact that U 
is differentiable and f u  is continuous at x, we obtain 

C~( Ux)  = LIM [f~(z)  8(z)(z - x ) ~ ( x ) ] / [  ( Uz - Ux)  ~(x) (z - x) ~(x)] 

= lim [ fv (z )  DU(z )  ~(~)] L I M [ ~ l ( z ) / ( z -  x) ~o(x)] 
z ~ x  

= Co(x) lim f u ( z )  D U ( z )  ~s(x) 
z ~ x  

-- e- i~  sign(x)/4 Ixl 1/2 + 2~O<x)C~(x) I 

If 11 is locally approximately homogeneous, it will be interesting to 
consider the behavior of the remainder under G~. This will be done in the 
next lemma. 

L e m m a  3. Let 0 be approximately homogeneous at x ~  9t: 

V6>0,  z ~ H ~ ( O ) ~ ( x + z ) = C ~ z ~ + O ( z  ~ + ! )  

Let g e  G~, and g ( x ) ~  oo. Then 8 is locally homogeneous at g(x): 

V6>0,  z e H 6 ( O ) ~ O ( g ( x ) + z ) = p g ( x ) C o z ~ + O ( z  ~+1) 

and the multiplier pg is given by (5.13). 

Proof.  Again it will be enough to verify that the remainder iswell  
behaved under U. Let 2 = Dg(x) .  Since U is differentiable at x ~ 0, we have 
U(x + z)  = U(x)  + 2z' for z �9 H~(0) and some z' �9 H6,(0). In addition, we 
have z = z ' +  O(z2). Therefore we can write 

O(U(x)  + 2z') = 8( U(x + z))  = f t : ( x  + z)  8 ( x  + z) 

Using the hypothesis on the behaviour of 8 at x, we can write 

9(U(x) + 2z') = f ~:(x + z ) [  C~z ~~ + O(z  ~ + 1)] 

Now f v  is differentiable at x and therefore 

8(U(x) + 2z') = [ fv (x )  + O(z)] [Coz  ~ + O(z  ~ + 1)] 

= fv (x )  Coz ~ + O(z  ~ +  1) 

= fv (x )  C ~ z , ~  + O ( z , ~  + 1) 

If we now replace 2z' by z, we find the stated result. | 

Remark .  Let us consider instead of (5.1) and (5.12) any other 
analogous quantity, which can be obtained by replacing at least one of the 
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inf by sup. Then we find that Lemmas 1 and 2 will hold for these 
quantities, too. 

5.3. Some Scalings of  

Until now we have shown how some local quantities transform under 
the theta group Go. We now come to calculate some of these quantities 
at some points. We will consider the following sets: the orbit of 0 
under G a : S =  { x ~ R ] 3 g e G a ,  x =  g(0)}; the orbit of 1 under 
Ga : P = {x e 9~ ] 3g e Ga, x = g(1) } ; and the nondegenerate fixed points of 
Ga: F =  {x e 9tl 3g e Gs, g(x) = x, Dg(x)  ~ 1 }. These sets will be treated 
separately. 

5.3.1.  T h e  O r b i t  o f  0 u n d e r  Gg .  First note that from (4.8b) one 
can obtain the behavior of 8 at ic~: 

8 ( z ) = l + O ( e  -~Imz) ( I m z - - + ~ )  

and so, because U will transform a path going to ioo into one going to 0, 
we find by (5.5) the behavior of 8 near x = 0: 

V6 > 0 z e Ha(0) ~ 8(z) = ~)( U( - l /z)) = ( - iz) 1/2 ~)( _ 1/z) 

= ( - iz) -1/2 + O(e -  = Im 1/z) 

=(i/z)I/2"~O(z n) for all n > 0  

Therefore we can apply Lemma 3 to find the behavior of 8 near any point 
of S. As before, (5.9), we can find a relation between Dg and pg, (5.13). 
Since ~ = - 1 / 2 ,  we have pg(X)=(IDg(x) l  1/4, with some ( s =  1. Writing 
now g(0) = bid and Dg(O) = l id 2, we find 

b/de S, and d relatively prime 

8(b/d+z)=(]d]--1/2 (i/z)1~2+ O(ZI/2), ~8 = 1 (5.14) 

Again z should approach 0 in a cone Ha(0). So we see that 8 is 
approximately homogeneous around every point of S. The explicit depen- 
dence of ~ on b and d is rather complicated {6) and so we only give the 
transformation behavior of ~b = arg ~ under T 2 and U: 

O(T2x) = qS(x), q)(gx) = ~b(x) - sign(x) 72/4 (5.15) 

Together with ~b(0)= 0, this determines ~b along S. 
This gives an explanation for the remarkable shape of Fig. 2d: let us 

again consider the renormalization of 8 near the real axis, hz, that we have 
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already met in the previous section, (4.9). Since 1/2 e S, and, on the other 
hand, ~ does not diverge faster than Im z-~/2, (5.2), we find that 

(i) The sequence h~(x) (2 ~ 0) is bounded for any real x. 

(ii) b/dE S, b and d relatively prime ~ h~(b/d) ~ h(b/d) 
=h(1/2)  ]d] 1/2 

So, fixing b and letting d grow to infinity, we find that for each b there 
is a sequence of peaks scaling down at x = 0 with an exponent 1/2 in the 
following sense: let t be the distance of the position of the peak from x -- 0, 
and let h be its height. Then h ~ t t/2. Different values of b give rise to 
different hierarchies of peaks. But x = 0 is no better than any other point of 
S, since any g e Go, g ~  U, will transform a hierarchy of peaks scaling 
down at zero into one scaling down at g(0), as can be seen'with the help of 
Lemma 3. So there will be at any point on S an infinity of hierarchies of 
peaks, each scaling down with an exponent 1/2. This explains the whole 
self-similarity of Fig. 2g. 

5.3.2.  The Orbit of  1 under  Gs .  We now come to the behavior 
of ~ near the points that form the set P. Here we have the following result, 
which we state without proof(8): 

V6 > 0 Vn: z ~ H~(0) ~ ~)(1 + z) = O(z") (5.16) 

This shows that ~ tends to 0 at any point of the orbit of 1 under Go. 
Since the orbit of 0 under the whole modular group G is Q, the coset 

decomposition (5.6) shows that Q is the union of S (the orbit of 0) and P 
(the orbit of 1). Since the scaling exponent is invariant under Go, we find 
that Q is the disjoint union of S and P, and so we know the scaling 
behavior of ~) at any rational point. 

5.3.3. The Nondegenera te  Fixed Points of Ga. We now 
come to the set F =  {x e 9~ ] 3g e Go, g(x) = x, Dg(x) ~ 1 }. Obviously for 
any x in F we have Dg(x) ~ O. Without loss of generality we may assume 
that Dg(x) < 1 (if not, we consider g - l ) .  Then there is an open attracting 
domain B c C, x e B, such that the sequence { g"z}, z e B, converges to x: 

z e B = ~ z , = g ' ( z ) ~ x  ( n ~ )  (5.17) 

On the other hand, the sequence of theta values will be 

an = ~(Zn) = L(Zn  -1 ) L ( Z n -  2)'" "L(x) O(Z) (5.18) 

Both sequences (5.17) and (5.18) become geometric progressions as n 
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grows to infinity, with growth factors Dg(x) and fg(x), respectively, and so 
we would expect that the local scaling exponent of 8 at these points is 

lim log 9(z,)/log(z, - x) = logfg(x)/log Dg(x) = - 1 / 4  + /7  (5.19) 
n ~ o o  

with 7 mod 2~ = Im log fg(x)/log Dg(x). 
In fact, this heuristic argument is essentially true. 

T h e o r e m .  For  all x ~ F, g (x )= x, we have 

lira log ~)(z)/log(z - x) = - 1 / 4  +/7  
z - +  x 

where y = I m  rg(x)/log Dg(x), and rg is given by (5.10). The point x should 
be approached in a cone Ha(x). 

Proof. We first need the following technical lemma, which shows 
that in a neighborhood of a fixed point, a holomorphic mapping is essen- 
tially given by its linear part. 

k e m m a .  Let g(x)=,,~ei~x+O(x 2) be holomorphic at x = 0 ,  and 
0 < 2 < 1. Then V~ > 0, 0 < 2 - ~, 2 + ~ < 1 there exists a neighborhood B of 
0 such that: 

(i) VzsB ,  Vn: () .--e)" Iz I ~< Ig'(z)l ~<(2+e)"  ]zl 

(ii) V z s B ,  z r  Vn:argz+n~b-e~<argg"(z)<~argz+n(~+e 

Proof. Because g is differentiable, we have limx ~ o [g(x)l/]xl = 2, and 
so, given e > 0, 0 < 2 - e, 2 + e < 1, there is a disk A with center in 0 such 
that 

x e A ~ ( 2 - ~ )  Ixl < [g (x ) l  < ( 2 §  

Then note that for all n, the image gnA of A under gn is in A, and so we 
can conclude the proof  of (i) by an induction argument (we only write the 
right-hand side): 

[g'+l(z)l--]g(gn(z)) I ~< ( 2 + e ) I g " ( z ) ]  ~< ( 2 + ~ )  "+l  ]z] 

To prove (ii), we note that arg g(z)= ~b + arg z + O(z) and therefore, 
given e > 0, 0 < 2 - e, 2 + ~ < 1, there is another disk B c A with center at 0, 
whose radius is smaller than ~, and a constant c > 0 such that: 

(j) Part  (i) of the lemma holds for B. 

(jj) z ~ B ~ (~ + arg z -  clzl <~ arg z <~ (~ + arg z + c[z]. 
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From part (i) of the lemma it follows that max [gPB[ ~<e(J.+e) p, and so 
again an induction argument will help us (we only write the right-hand 
side): 

arg gn + l(z ) = arg g(g'(z)) <<. arg g'(z) + (~ + c max [g"B[ 

<~argz+(n+l)(~+~c ~ ( 2 + e )  p 
p = l , n  

<~argz+(n+l)(~+ec ~ ( 2 + e )  p 
p =  1, cxD 

~<argz+ ( n +  1)~+eCte 

Since e was arbitrary, the lemma is proved. | 

Now we come to the proof of the theorem. Let x E F be the real fixed 
point of g e G~. Then g has a positive real derivative, which, without loss 
of generality, we can assume to be smaller than 1. Therefore the lemma 
holds with 2=Dg(x) and ~b=0 provided we translate all functions in 
question: so we pose gJ(z)=~l(x+z), h ( z ) = g ( x + z ) - x ,  and bh(z)= 
rg(X + z). Then we have 

log g~(h(z)) = bh(Z) + log gJ(z) (5.20) 

and we are interested in the following limit: 

lira log ~P(z)/log z (5.21) 
z ~ 0  

Let K be a compact in H such that h'K converges to zero as n grows to 
infinity. Then we will prove that the following limit exists uniformly in K: 

lim X , ( K ) =  lim log ~(h'K)/ logh'K=-1/4+i? (5.22) 
n ~ o o  n ~ o o  

with y as stated in the theorem. 
Let ~c = limz ~o bh(z)= rg(X). Given any ~ > 0 (small enough), there is a 

disk D with center at x = 0 such that (we denote by E the unit disk around 
x = 0 ) :  

(i) the lemma holds for e and D 
(ii) b h ( D ~ H ) ~ c + e E  (5.23) 

Here and in the following, the operations on the sets should be understood 
in the natural way. Then, since the compact K lies in the attracting domain 
of x = 0, there is an integer m such that 

hm(K) ~ D (5.24) 
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Consequently, we may suppose that K c D  [because Xn(hm(K))=Xn+m].  
Using the covariance of T, (5.20), we write 

X.(K)=[logT(K)+ ~ bh(hP-lK)]/loghn(K) (5.25) 
p = 1 , n  

We now apply the lemma to estimate log h,(K) [2 = Dh(0)]:  

Vn > 0" log h"(K) ~ n log(2 + eE) + e E +  log K (5.26) 

Then there is an n o such that for all n > no we have: 

(i) log T(K)/log h"(K) c e E  (5.27) 

(ii) log K/n e ~E 

The first is clear, since K is a compact in H, and 8 - - and  therefore ~U--is 
never 0 in H. (7) The second is clear, since K is bounded away from zero. 

All this together, (5.23)-(5.27), yields 

n > no ~ X , (K)  c 2~E+ 0c + eE)/[log(2 + eE) + 2~E] 

Now e was arbitrary, which shows that the limit (5.22) exists and is equal 
to x/log 2. From relation (5.9) it follows easily that Re K= -1 /4 ,  and so 
the assertion (5.22). 

If we now show that for all 6 > 0 there is a compact K, K c H, and a 
disk D of radius small enough, with center at 0, which satisfies 

H6(O)nDc U hP(K) (5.28) 
p = 1,~x3 

we would have finished the proof, since for any n, any path going to (0.0) 
in H~ will finally stay in Up . . . .  hP(K) �9 

We now want to construct this compact K. First note that there is a 
disk D such that the lemma holds with some e <min{Dh(0) ,  1 - 2 ,  6/2}, 
and that h restricted to D is injective. Then we have hD c D and so by 
iteration h"+lD c hnD. Then let K1 be the compact closure of D\hD. A 
moment's reflection shows that 

D =  U hP(Kl) 
p = l , ~  

Now let K =  Kx n H~(0). Part (ii) of the lemma shows that 6 < arg hnK< 
7~-6, which proves (5.28), and therefore the theorem. 
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5.4. Back to Wp 

We now interpret our results in terms of the fractal family W~. We 
have found three different scalings to which there are associated the three 
sets S, R, and F. Throughout this section we supose, since we could not 
prove it, that Wa satisfies locally condition (ES) or (PS) as defined in 
Section 3. We now present results about W~ from the analysis of 9 for the 
three different classes of points. 

5.4.1. The Orbit of 0 under Gs. At the points that form the set 
S, the functions Wa might show exact scaling behavior. From the relation 
between ~1 and the wavelet transform Ta of W~, (4.7), it follows that the 
local scaling exponent ~a(x) of Wa at these points is 

e~(x) = (/3- 1 )/2 (5.29) 

whereas the periodic scaling exponent 7a is zero. The local constants c+ 
and c as given by the definition (ES) can now be calculated from (3.7) 
and (4.4). For bid in S, and b, d relatively prime, and/3 r 3, 5,..., we have 

c + (b/d) = Kid[ -1/2 sin [g(/3 + 1 )/4 - ~,b I/sin [z~(/3 + 1 )/2] 
(5.30) 

c (b/d) = K i d [ -  ]/2 sin[Tz(/3 + 1)/4 + ~b]/sin[rc(/3 + 1)/2] 

where the phase ~b is determined by (5.15). The constant is given by 

K =  (1/4) ~/2+ I/F([/3 + 1]/2) (5.31) 

So we see that there are eight kinds of local symmetry of W~ at the 
points that form the set S. This is obviously due to the eighth root of the 
unity in (5.14): At x = 0  we rediscover that Wp is locally even. For 
1 </3 < 3 we find that Wp has a cusp at x = 0 pointing to infinity; for/3 = 2 
the function is differentiable at the left at x = 1/2 (compare Fig. 1 ). 

5.4.2. The Orbit of 1 under Gs. At these points the local 
exponents are no longer integrable with respect to the wavelet g~/2. So we 
only are able to give a lower bound for ~e(x) for x ~ P :  

o~(x) >~ ill2 (5.32) 

Notice that for /3 = 2 this could imply that W~ is differentiable at these 
points. 

5.4.3. The  N o n d e g e n e r a t e  Fixed Points .  At these points W~ 
shows oscillatory critical behavior. The local scaling exponent is then the 
same for all x ~ F: 

c~(x) = (2/3 - 1)/4 (5.33) 
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The periodic scaling exponent ~ will depend on x, but will be 
independent of/~. It is given by the theorem that we just have proved. 

6. DISCUSSION 

We have shown that the wavelet transformation may be useful for 
analyzing the scaling behavior of fractals. For two special classes of 
fractals, we were able to give rigorous results. However, we were not able 
to characterize uniquely scaling properties with the help of this transfor- 
mation. We hope to be able to report on this in a forthcoming article. In 
the case of a special family of fractals W~, we calculated explicitly the 
wavelet transform, which in this case was a Jacobi theta function. We 
analyzed some scalings of this theta function, which we finally used to 
obtain some indications about the scaling behavior of W~. It might be 
interesting to analyze other fractals associated to modular functions, on 
which we hope to report soon. 
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